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Summary
Sterols have long been associated with diverse fields, such as cancer treatment, drug

development, and plant growth; however, their underlying mechanisms and functions remain

enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box

transcription complex in modulating the steroid metabolism pathway within soybeans.

Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a

rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either

GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of

SQE weakens this tolerance. Field experiments conducted over two seasons further reveal

increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought

stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic

stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the

upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-

YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the
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In vitro GST pull-down assay

The open reading frames (ORFs) of bait protein and candidate

protein genes were cloned into the pColdTM TF vector (TaKaRa,

Bio) and pGEX-4T-1 vector (GE Healthcare, Chicago, IL),

respectively. Subsequently, the recombinant plasmids were

introduced into the E. coli strain transetta (TransGen, Biotech).

Expressions of the corresponding proteins were induced over-

night using 0.5 mM isopropyl b-D-thiogalactoside (IPTG) (Inalco

SPA, San Luis Obispo, CA) at 16 °C, and then a pull-down assay

was performed. The experimental details were described by Yu

et al. (2021).

In vitro EMSA binding assay

The genes encoding three subunit proteins of the NF-Y

transcription factor were cloned into expression vectors harbour-

ing the tag proteins (His, GST, and MBP), respectively, and

subsequently transferred into competent cells of the E



were observed and recorded during controlled water treatment.

The leaf samples of crops were collected at the onset of

phenotypic variations in order to quantify physiological and

biochemical alterations.

Five-week-old of soybean, wheat, foxtail millet, and maize

seedlings cultivated under normal conditions were subjected to

osmotic stress treatment by irrigating them with 200 mM

mannitol aqueous solutions. During osmotic stress treatment,

the seedlings were sprayed with mock (mock, 40 mL distilled

water containing 200 lL of 40 mM APE), fucosterol (fucosterol

aqueous solutions, 20 lL fucosterol (600 mg/L) into 40 mL

distilled water containing 200 lL of 40 mM APE), and soyasapo-

nin II aqueous solutions (soyasaponin II aqueous solutions, 20 lL
soyasaponin II (600 mg/L) into 40 mL distilled water containing

200 lL of 40 mM APE). The sprays were applied four times each

week, with at least 1 day between each spraying. The phenotype

changes of the crops were observed and recorded during

controlled water treatment. Leaf samples of the crops were

taken when differences in the leave phenotype began to appear

in order to measure physiological and biochemical changes.

Metabolites extraction, UHPLC–MS–MS analysis, and
data processing

The samples of stress induced WT and transgenic soybean

seedlings (GmSQE1-OE6 and GmNF-YC9-OE8 plants) were

freeze-dried, and then crushed with a mixer mill. A 50 mg

aliquot of each individual samples were precisely weighed and

transferred to Eppendorf tubes, which were used for metabolites

extraction and UHPLC–MS analysis (Allwegene Technology Co.,

Ltd, Beijing, China). The methods of plant metabolites extraction

were described in detail by Vos et al. (2007).

The UHPLC separation was performed using an EXIONLC

System (Sciex). The mobile phase A was 0.1% formic acid in

water, while mobile phase B was acetonitrile. The column

temperature was set at 40 °C, and the auto-sampler temperature

was set at 4 °C with an injection volume was 2 lL. A Sciex QTrap

6500+ (Sciex Technologies) was applied for assay development.

Typical ion source parameters were as follows: IonSpray Voltage,

+5500/�4500 V; Curtain Gas, 35 psi; Temperature, 400 °C; Ion
Source Gas, 1:60 psi; Ion Source Gas 2, 60 psi; DP, � 100 V

(Allwegene Technology Co., Ltd, Beijing, China).

SCIEX Analyst Work Station Software (Version 1.6.3) was

employed for MRM data acquisition and processing. MS raw data

(.wiff) files were converted to the TXT format using MSconventer.

An in-house R program and database were applied to peak

detection and annotation (Allwegene Technology Co., Ltd,

Beijing, China).

Measurement of squalene, cycloartenol, and beta-amyrin
by LC–MS

The samples of untreated, 25 mM terbinafine treated, and

100 mM mannitol induced soybean seedlings were freeze-dried,

and then crushed with a mixer mill. A 50 mg aliquot of each

sample was accurately weighed and transferred to Eppendorf

tubes for metabolites extraction. The extracted metabolites were

used for squalene, cycloartenol, and beta-amyrin content

measurement by UHPLC–MS analysis. The method of extracting

plant metabolites was described in detail by Vos et al. (2007).

Squalene (5 mg/mL) (Sigma, USA), cycloartenol (5 mg/mL)

(Sigma, USA), and beta-amyrin (5 mg/mL) (Sigma, USA) were

used in appropriate amounts to form standard solutions. These

solutions were then diluted with methyl alcohol to create a

suitable standard series of standards at concentrations of 5, 10,

20, 50, 100, 200, and 500 ng/mL. The peak areas of the standard

substances at different concentrations were used to draw the

standard curves that exhibited a good linear relationship with an

R2 value >0.99. The standard curves were drawn based on the

peak areas of the standard substance at different concentrations

and their corresponding concentrations. With an R2 value >0.99,
it indicated that the standard curves exhibit a strong linear

relationship and could be utilised for calculating the concentra-

tions of squalene, cycloartenol, and beta-amyrin in the samples.
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